Formulae for the generalized Drazin inverse of a block matrix in terms of Banachiewicz–Schur forms
نویسندگان
چکیده
منابع مشابه
Formulae for the generalized Drazin inverse of a block matrix in terms of Banachiewicz–Schur forms
We introduce new expressions for the generalized Drazin inverse of a block matrix with the generalized Schur complement being generalized Drazin invertible in a Banach algebra under some conditions. We generalized some recent results for Drazin inverse and group inverse of complex matrices.
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملExpressions for the generalized Drazin inverse of a block matrix in a Banach algebra
We present some new representations for the generalized Drazin inverse of a block matrix with generalized Schur complement being generalized Drazin invertible in a Banach algebra under conditions weaker than those used in recent papers on the subject.
متن کاملgeneralized drazin inverse of certain block matrices in banach algebras
several representations of the generalized drazin inverse of an anti-triangular block matrix in banach algebra are given in terms of the generalized banachiewicz--schur form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2014
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2013.11.054